Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The M 7.8 Kaikoura earthquake occurred in the northern South Island of New Zealand on 3 Nov., 2016, involving the rupture of >20 faults. To understand the complexity of the Kaikoura earthquake, details of the fault ge- ometry, seismic velocity distribution, and stress field are necessary. We have undertaken seismic tomography along the c. 200 km length of the rupture zone. Data from both 51 temporary stations and 22 permanent (GeoNet) stations were collected from March 2011 to December 2018. The hypocenter of the Kaikoura earthquake and aftershocks near the Kekerengu fault locate along lineaments where seismic velocity changes laterally in the epicentral region. In the uppermost crust, lower velocities occur beneath the Emu Plain and Cape Campbell. A higher velocity region near Kaikoura may have acted as a barrier that prevented eastward rupture from the hypocenter and led to the complex fault distribution in this area. These complexities in the seismic velocity structure may relate to the multi-segment rupture character of the Kaikoura earthquake. Spatial correlations between rupture areas and high Vp/Vs suggest the involvement of overpressured fluid in the nucleation and propagation of rupture segments, which is also supported by the reactivation of unfavourably oriented strike-slip ruptures, many lying at c.70◦ to the regional maximum compressive stress trajectories.more » « less
-
ABSTRACT Seismic tomography is the most abundant source of information about the internal structure of the Earth at scales ranging from a few meters to thousands of kilometers. It constrains the properties of active volcanoes, earthquake fault zones, deep reservoirs and storage sites, glaciers and ice sheets, or the entire globe. It contributes to outstanding societal problems related to natural hazards, resource exploration, underground storage, and many more. The recent advances in seismic tomography are being translated to nondestructive testing, medical ultrasound, and helioseismology. Nearly 50 yr after its first successful applications, this article offers a snapshot of modern seismic tomography. Focused on major challenges and particularly promising research directions, it is intended to guide both Earth science professionals and early-career scientists. The individual contributions by the coauthors provide diverse perspectives on topics that may at first seem disconnected but are closely tied together by a few coherent threads: multiparameter inversion for properties related to dynamic processes, data quality, and geographic coverage, uncertainty quantification that is useful for geologic interpretation, new formulations of tomographic inverse problems that address concrete geologic questions more directly, and the presentation and quantitative comparison of tomographic models. It remains to be seen which of these problems will be considered solved, solved to some extent, or practically unsolvable over the next decade.more » « less
-
Abstract During the past few years, distributed acoustic sensing (DAS) has become an invaluable tool for recording high-fidelity seismic wavefields with great spatiotemporal resolutions. However, the considerable amount of data generated during DAS experiments limits their distribution with the broader scientific community. Such a bottleneck inherently slows down the pursuit of new scientific discoveries in geosciences. Here, we introduce PubDAS—the first large-scale open-source repository where several DAS datasets from multiple experiments are publicly shared. PubDAS currently hosts eight datasets covering a variety of geological settings (e.g., urban centers, underground mines, and seafloor), spanning from several days to several years, offering both continuous and triggered active source recordings, and totaling up to ∼90 TB of data. This article describes these datasets, their metadata, and how to access and download them. Some of these datasets have only been shallowly explored, leaving the door open for new discoveries in Earth sciences and beyond.more » « less
-
SUMMARY Knowledge of attenuation structure is important for understanding subsurface material properties. We have developed a double-difference seismic attenuation (DDQ) tomography method for high-resolution imaging of 3-D attenuation structure. Our method includes two main elements, the inversion of event-pair differential $${t^*}$$ ($$d{t^*}$$) data and 3-D attenuation tomography with the $$d{t^*}$$ data. We developed a new spectral ratio method that jointly inverts spectral ratio data from pairs of events observed at a common set of stations to determine the $$d{t^*}$$ data. The spectral ratio method cancels out instrument and site response terms, resulting in more accurate $$d{t^*}$$ data compared to absolute $${t^*}$$ from traditional methods using individual spectra. Synthetic tests show that the inversion of $$d{t^*}$$ data using our spectral ratio method is robust to the choice of source model and a moderate degree of noise. We modified an existing velocity tomography code so that it can invert $$d{t^*}$$ data for 3-D attenuation structure. We applied the new method to The Geyser geothermal field, California, which has vapour-dominated reservoirs and a long history of water injection. A new Qp model at The Geysers is determined using P-wave data of earthquakes in 2011, using our updated earthquake locations and Vp model. By taking advantage of more accurate $$d{t^*}$$ data and the cancellation of model uncertainties along the common paths outside of the source region, the DDQ tomography method achieves higher resolution, especially in the earthquake source regions, compared to the standard tomography method using $${t^*}$$ data. This is validated by both the real and synthetic data tests. Our Qp and Vp models show consistent variations in a normal temperature reservoir that can be explained by variations in fracturing, permeability and fluid saturation and/or steam pressure. A prominent low-Qp and Vp zone associated with very active seismicity is imaged within a high temperature reservoir at depths below 2 km. This anomalous zone is likely partially saturated with injected fluids.more » « less
-
Abstract Water injection and Enhanced Geothermal System (EGS) technologies have been used to exploit heat resources from geothermal reservoirs. Detecting spatial and temporal changes in reservoir physical properties is important for monitoring reservoir condition changes due to water injection and EGS. Here, we determine high‐resolution models of the temporal changes in the three‐dimensionalPwave velocity and attenuation (Vp and Qp) structures between the years 2005 and 2011 in the northwestern part of The Geysers geothermal field, California, using double‐difference seismic velocity and attenuation tomography. The northwest Geysers has a shallow normal temperature reservoir (NTR) underlain by a high temperature reservoir (HTR) that has substantial underutilized heat resources but may be more fully utilized in the future through EGS. In the southeastern part of the northwest Geysers, however, EGS has been successfully but unintentionally applied for at least 50 years because the waters injected into the NTR have been flowing into the HTR. Our models are well resolved in this area and show that the NTR and HTR have different seismic responses (seismicity, Vp, and Qp) to water injection, which can be explained by the injection‐induced differences in fracturing and saturation that are likely related to their geological properties. Our results indicate that the joint analysis of changes in seismicity, velocity, and attenuation is valuable for characterizing changes in reservoir fracturing and saturation conditions. Our results suggest that high‐permeability zones and/or pre‐existing permeable fault zones are important for the success of EGS at The Geysers and potentially other geothermal systems.more » « less
-
Abstract We present two new seismic velocity models for Alaska from joint inversions of body-wave and ambient-noise-derived surface-wave data, using two different methods. Our work takes advantage of data from many recent temporary seismic networks, including the Incorporated Research Institutions for Seismology Alaska Transportable Array, Southern Alaska Lithosphere and Mantle Observation Network, and onshore stations of the Alaska Amphibious Community Seismic Experiment. The first model primarily covers south-central Alaska and uses body-wave arrival times with Rayleigh-wave group-velocity maps accounting for their period-dependent lateral sensitivity. The second model results from direct inversion of body-wave arrival times and surface-wave phase travel times, and covers the entire state of Alaska. The two models provide 3D compressional- (VP) and shear-wave velocity (VS) information at depths ∼0–100 km. There are many similarities as well as differences between the two models. The first model provides a clear image of the high-velocity subducting plate and the low-velocity mantle wedge, in terms of the seismic velocities and the VP/VS ratio. The statewide model provides clearer images of many features such as sedimentary basins, a high-velocity anomaly in the mantle wedge under the Denali volcanic gap, low VP in the lower crust under Brooks Range, and low velocities at the eastern edge of Yakutat terrane under the Wrangell volcanic field. From simultaneously relocated earthquakes, we also find that the depth to the subducting Pacific plate beneath southern Alaska appears to be deeper than previous models.more » « less
An official website of the United States government
